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Abstract 
 

Experimental results showing significant reductions from classical in the Rayleigh-Taylor 
(RT) instability growth rate due to high pressure material strength or effective lattice viscosity in 
metal foils are presented. On the Omega Laser in the Laboratory for Laser Energetics, 
University of Rochester, target samples of polycrystalline vanadium are compressed and 
accelerated quasi-isentropically at ~1 Mbar pressures, while maintaining the samples in the 
solid-state. Comparison of the results with constitutive models for solid state strength under 
these conditions show that the measured RT growth is substantially lower than predictions 
using existing models that work well at low pressures and long time scales. High pressure, 
high strain rate data can be explained by the enhanced strength due to a phonon drag 
mechanism, creating a high effective lattice viscosity. 
 
I. INTRODUCTION 
 

Studying material properties under compression at high pressure is a new frontier in 
material science1. Macroscopically, materials deformed under compression can change their 
yield strength, tensile strength, ductility, toughness and work hardening. Understanding these 
mechanisms allow material engineers to tailor the mechanical properties of materials to suit a 
variety of different applications. Microscopically, deformation under compression changes the 
atomic lattice arrangement of a material. The lattice structure can also undergo phase 
transitions when subjected to high pressure and temperature.2 This microscopic change in the 
lattice structure can have a significant impact on the macroscopic properties of a material. A 
common method of loading materials to high pressure is the use of shocks. Shock loading, 
however, causes heating, potentially melting the material, thus preventing study of lattice 
properties at high pressure and high density in the solid state. A way to load materials to high 
pressure under nearly isentropic conditions is by ramp compression.1,3,4  One approach to 
ramp loading is to use a laser to drive a strong shock through a low-Z reservoir, which unloads 
as a rarified plasma across a vacuum gap that ten stagnates on the sample.  This creates a 
nearly isentropic pressure profile in the sample.  
 Utilizing this reservoir-gap configuration, our observational parameter to study 
material dynamics under extreme conditions is Rayleigh-Taylor instability (RTI). When a low 
density fluid of density ρL accelerates a higher density fluid of density ρH, conditions for the 
buoyancy driven Rayleigh-Taylor instability are set up.5,6 Perturbations at the interface can 
grow, generating “bubbles” of the lower density fluid rising into the denser fluid, and “spikes” of 
the latter sinking through the low density fluid.7 We present experimental and simulation results 
that demonstrate an RT instability stabilization mechanism at high pressure, namely, effective 
lattice viscosity via a phonon drag mechanism. This high pressure stabilization mechanism is 
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predicted to increase with pressure, provided the solid-state lattice is maintained. Studying 
material strength properties using RTI was first utilized in the J. F. Barnes’ experiment where a 
rippled Al plate was accelerated by high explosives reaching about 100 kbar peak pressure.8 
Analytic theory for RTI in solids has also been developed.9  This paper presents laser driven 
experimental results reaching about 900 kbar peak pressure in solid state samples of 
vanadium (V), a body-centered cubic (BCC) metal.10  
 The fundamental carriers of deformation in a solid-state sample are dislocations. The 
resistance to dislocation transport is the microscopic basis for material strength. Dislocations 
move in discrete step sizes, b, called a Burgers vector, of order the crystal lattice spacing.  
When large numbers of dislocations, of order ~104, move in concert, macroscopic deformation 
occurs. Generally, dislocations in a solid exist prior to loading, and are pinned against barriers, 
such as the Peierls barrier in BCC metals.  When a shear stress is applied, in our experiments 
by the laser created ramp drive, dislocations may remain pinned or jump over the barrier 
depending on the height and extent of the barrier and the magnitude of the applied shear 
stress. There are two relevant mechanisms by which the dislocations can overcome the barrier 
at the high pressures and strain rates studied here: thermal activation and phonon drag. For 
low strain rates, thermal fluctuations in the lattice can kick the dislocation over the barrier, after 
which it will glide along a glide plane in the lattice till it gets pinned (stopped) at another barrier.  
This mechanism of deformation is called thermal activation. If the applied shear stress is 
sufficiently strong, however, the dislocations can be pushed over the tops of all barriers. In this 
case, the resistance to the dislocation motion can come from scattering of lattice phonons and 
is referred to as phonon drag. In the thermal activation regime, the dislocation velocity 
increases exponentially with an increasing shear stress, whereas in the phonon drag regime, 
the increase of velocity with shear stress is linear.  
 The starting point in constructing a strength model is Orowan’s equation,11,12  

€ 

˙ ε = ρdislocbv disloc , where ε is plastic strain (such as a change in rippled amplitude, Δη, due to the 
RT instability, normalized by the rippled wavelength, ε ~ Δη/λ), dε/dt is strain rate, ρdisloc is 
mobile dislocation density, b is the Burgers vector, and <vdisloc> is the average dislocation 
velocity. Relationships for average dislocation velocity in the thermal activation regime and 
phonon drag regime are inserted into Orowan’s equation. Two popular models that result are 
the Steinberg-Lund model,13 and the Preston-Tonks-Wallace or PTW model.14 The Preston-
Tonks-Wallace (PTW) strength model is strain rate dependent, and is based on the 
deformation mechanisms of thermal activation for low strain rates (which assumes dislocations 
are pinned against stress barriers in the lattice and require a thermal “kick” to surmount the 
barrier and glide to the next pinning site) and viscous phonon drag for high strain rates (which 
assumes dislocations are gliding over the tops of stress barriers, resisted only by the drag from 
scattering of lattice phonons). The PTW strength in the low-strain limit is expressed as: 
 
            ,   (1) 
 
where G = G(P,T) is the pressure dependent shear modulus, erf is the mathematical error 
function,  is the strain rate,   is the normalized temperature, Tmelt(ρ) is the Lindeman law 
melt temperature, 15,16   is a reference inverse time scale,  is the critical strain rate 
above which the deformation switches from thermal activation to phonon drag, and y0, y∞, κ, γ, 
s0, and β are material dependent input parameters. These parameters roughly correspond 
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material properties according to γ ~ ρdislocb2, κ ~ 1/Uk, y∞ ~ σA,  y0 ~ σA + σP, and y0-y∞ ~ σP, where 
ρdisloc, b, Uk, σA, and σP represent dislocation density, Burgers vector, kink activation energy, 
athermal strength component, and Peierls stress, respectively.17 The PTW strength, σs, in the 
high-strain (saturated) limit has a similar form, only with s0 and s∞ replacing y0 and y∞.  These 
are combined in a Voce work hardening prescription for arbitrary strain, ε.14  We will also show 
comparisons to an older model, the Steinberg-Guinan model,16 which is written as,  

€ 

σ = σ0f(ε)G /G0, where 

€ 

f(ε) = [1+β(εi + ε)]
n , and  

 
  .     (2) 

 
This model is largely a first order Taylor expansion in pressure and temperature, with a work 
hardening prefactor which is a power law in strain, ε.  And we discuss briefly the Steinberg-
Lund model, which is written as   

€ 

σ = [σT + σAf(ε)] G /G0 , where   
 

         (3) 

 
Note, the Steinberg-Guinan model is independent of strain rate.  The Steinberg-Lund model is 
strain-rate dependent, and in the phonon drag regime, gives a linear dependence of strength 
on strain rate. The PTW is also strain rate dependent, but in the phonon drag regime, strength 
increases roughly as strain rate to the ~1/4 power. These two material strength models differ 
significantly in their prediction of critical strain rate at which the deformation transitions from 
thermal activation to phonon drag. Once in the phonon drag regime, the Steinberg-Lund model 
assumes strength, σ, varies linearly with strain rate, σ ∼  dε/dt, whereas PTW assumes strength 
increases as σ ∼ (dε/dt)1/4.   
 
II. VANADIUM RAYLEIGH-TAYLOR EXPERIMENT 
 
 A typical target in our experiment has a “reservoir” consisting of 40 µm thick 
polyimide, C22H10N2O5 at density ρ = 1.42 g/cm3, 125 µm thick polycarbonate, C4H4O at ρ = 1.2 
g/cm3, and 35 µm thick brominated polystyrene, C50H48Br2 at ρ = 1.22 g/cm3, glued together. 
This is followed by a 300 µm vacuum gap, then the rippled V sample. To thermally insulate the 
rippled V sample from the heat created by the stagnating plasma, we use a 7-8 µm thick, CH-
based epoxy (Hardman Green) “heat shield”, C38H53N1O8  at ρ = 1.14 g/cm3,  conformal on the 
ripple side and machined flat on the gap side. The rippled V sample is made by sputtering V 
onto a mandrel that has sinusoidal ripples of 60 µm wavelength and 0.6 µm amplitude 
machined onto its surface. The back surface of the V is polished flat, then the mandrel is 
chemically removed. The vanadium samples were full density, had an average grain size of ~ 
1 µm in the lateral direction, 3-5 µm in the thickness (columnar) direction, and a measured 
tensile strength at ambient pressure and low strain rate of 7.15 kbar.19 The drive calibration 
shots replaced the rippled V package with 10 µm Al backed by a 500 µm LiF window for 
interface velocity measurements. 
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          We use six azimuthally symmetric laser beams at the Omega Laser, University of 
Rochester, each with EL~135 J energy at laser wavelength of lL=351 nm and 3.7 ns square 
pulse shape, to generate our drive. The ~640 µm diameter flat-top spatial profile is achieved 
using continuous phase plates (CPP) on the drive beams,20 creating an average peak laser 
intensity of IL ~ 2.5 x 1013 W/cm2. This launches a strong shock through the reservoir which, at 
shock breakout, releases as a plasma across the 300 µm vacuum gap and stagnates first on 
the epoxy heat shield then the V sample, creating a ~1 Mbar ramped pressure in front of the V 
sample, as illustrated schematically in Fig.1a.3,4  Based on Newton’s second law, P ~ ρgz, this 
causes the z =35 µm thick V sample to accelerate at a peak value of g ~ 5 x 1013 cm/s2 (0.5 
µm/ns2). The accelerating sample is RT unstable; the ripples will tend to grow. When the 
material has strength, the RT growth rate can be considerably reduced compared to that of 
classical growth, i.e. the no strength case. This is clearly illustrated in the material density plots 
from 2D simulations at a sequence of times, shown in Fig. 1b.  The sample is predicted to stay 
factors of 3-5 below the calculated melt temperature, using the Lindemann melt law.15,16 
 To measure the RT ripple growth, we use face-on radiography with a 5.2 keV laser 
driven vanadium He-α x-ray backlighter. For area backlighting, we use a large area x-ray 
source and a gated x-ray camera with a 2 x 2 array of 15 µm pinholes configured at 
magnification of ~6.21  Alternatively, we use a ~15 µm diameter pinhole aperture placed just in 
front of the V backlighter foil to create a point source for projection imaging at magnification of 
~19, onto a gated x-ray camera. Figure 2 on the right hand side shows example radiographs 
recorded at 40 and 80 ns. The contrast (light and dark bands or strips) are due to variations in 
transmitted backlighter x-ray intensity, , where λmfp is the x-ray mean free 
path length, and z is the vanadium foil thickness. The RT growth causes foil thickness 
modulations of increasing depth, Δz, which cause x-ray optical depth modulations, ΔOD = 
Δz/λmfp.  Figure 2 (left hand side) shows lineouts of radiographic images of the ripples averaged 
over a 120 µm vertical window at delay times of 40 ns and 80 ns relative to the start of the 

drive laser, compared with fits using .  Here I is the average intensity 

through the rippled foil, Iv is the intensity in the ripple valleys (brighter regions), and and  
are the fitted amplitude, wavelength and the phase of the ripple. The perturbation growth is 
written as a growth factor, GF(t) = ΔOD(t)/( ΔOD0

.MTF), where ΔOD(t)  is the modulation in 
optical depth at time t due to the ripple, ΔOD0 = η0/λmfp is the initial optical depth, where 
λmfp~19.6 µm is the mean free path length of the 5.2 keV backlighter x rays in vanadium.  The 
optical depth calibration is quantified by step-wedge measurements.  The ΔOD(t) is determined 
from the radiograph by a Fourier analysis of the ripple lineouts. The modulation transfer 
function (MTF), which quantifies the diagnostic spatial resolution, is measured on separate 
shots using a resolution grid:  MTF > 0.8 for the λ = 60 µm ripples used in this experiment.  
 While there are a few analytical models of RTI perturbation growth calculations,9 in 
order to include a complete hydrodynamic effects, our RT growth factor results are compared 
to the results from 2D radiation-hydrodynamics simulations including a constitutive strength 
model. After normalizing to the laser energy of 820 J, the self-consistent data set of GF(t) 
spanning several shot campaigns is shown by the red square symbols in Fig. 3. Typical 
experimental errors are estimated to be dGF/GF ~15% or less. We estimate an average strain 
rate, ~3 x 107 s-1, by fitting a linear slope to the calculated strain over the interval of 25-40 
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ns. For t > 40 ns, this drops to ~ 3 x 106 s-1. The top curve corresponds to a 2D simulation 
of the RT growth assuming no strength, and overpredicts the experimental data at 70 ns by a 
factor of ~6. Simulations using the PTW model using the as-published the default input 
parameters is the next highest curve; which also considerably over-predicts the experimental 
data. To fit our experimental data with the PTW model in Fig. 3, we lowered the critical strain 
rate for the transition from the thermal activation to the phonon drag regime from the default 
value of ~109 s-1 to ~106 s-1, accomplished by multiplying the PTW input parameters γ, y0, 
and s0 by 1/800, 0.60, and 0.68, respectively.10,14  The default PTW parameters for V in the 
high-  regime were set by overdriven shock experiments in Ta, also a BCC metal.14 
Furthermore, the strain rate interval of 104-109 s-1 was not modeled but rather “filled in” with 
PTW, due to the absence of reliable data to fit. So, it is not surprising that substantial changes 
in these input parameters for ramp loaded V were required. These changes to the PTW input 
parameters leave the strength predictions at  < 106 s-1 (thermal activation regime) largely 
unchanged, while increasing the strength for  > 106 s-1 (phonon drag regime). It is interesting 
to note that the Steinberg-Lund strength model,13 which has several features similar to the 
PTW model, predicts the transition from thermal activation to phonon drag in vanadium would 
occur at ~105 s-1 for default input parameters. Hence, the critical strain rate for the transition 
from thermal activation to phonon drag is uncertain by factors of 103-104, due to the lack of 
data in this ultrahigh-  regime. The maximum strength occurs at the time of peak pressure 
and strain rate. The calculated peak strength for our RT experiments, σmax~25 kbar, 
corresponds to a peak pressure and strain rate of 900 kbar and 3 x 107 s-1. This is a factor of 
3.5 higher than the measured ambient strength of 7.15 kbar.19 Recent theoretical work shows 
that the shear modulus is not expected to increase significantly with pressure in this pressure 
range.22 This suggests that our observed strength increase is due to rate effects rather than 
pressure. We estimate an overall ~20% uncertainty in our σmax~25 kbar peak strength result, 
based on 10% due to the uncertainties in the growth factor measurements, 10% due to the 
uncertainties in our plasma drive, and 10% due to any potential model dependence in our 
analysis, all added in quadrature.  During this extended series of V-RT shots, we also did shots 
where the peak pressure varied from 770 kbar to 950 kbar.  For each shot, we inferred a peak 
strength by the methods describe above. Both models give peak strength increasing with peak 
pressure, but more importantly, both models give the same peak strength. So independent of 
which strength model we use, once the settings in the model have been adjusted to reproduce 
the RT experiment, they give the same predicted peak strength (corresponding to peak 
pressure).  This suggests our experiments are more than just a test of strength models at high 
pressures and strain rates, but a means of inferring peak strength itself, albeit indirectly. 
 
III. DISCUSSION 
 
 We now compare to an analytic RT growth model that treats strength as an effective 
lattice viscosity. In the linear regime, classical RT growth can be written as , 
where  gives the growth rate for inviscid fluids, and A, λ, and g are the 

Atwood number, perturbation wavelength, and foil acceleration, respectively. For viscous 
fluids, the RT growth rate is determined from , where ν(cm2/s) = µ/ρ is the 
kinematic viscosity, µ(dyne·sec/cm2=poise) is the dynamic (absolute) viscosity, and ρ is 
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material density. 23,24  We show these analytic results for RT growth factors versus perturbation 
wavelength at 70 ns in Fig. 4. Experimental data were taken at λ = 40 and 60 µm (red 
squares). The 2D simulations were done at λ = 40, 60, and 100 µm with the modified strength 
models (blue diamonds, green triangles), and with strength turned off (black circles). The 
smooth curves in Fig. 4 correspond to (in order from the top) dynamic viscosities of 0, 100, 
200, 400, and 800 poise, with a best fit at ~400 poise  We show also in Fig. 3 the growth factor 
time evolution for the viscous model using 400 poise.  As a consistency check, we use a 
relationship equating strength with an effective lattice viscosity,24 , giving 

. Using an average strain rate of 3 x 107 s-1 over the interval of 25-40 ns from 
the 1D radiation-hydrodynamics simulations and the fitted viscosity of 400 poise gives an 
estimated peak strength of σmax~29 kbar. For a second estimate, we make a rough 
approximation of strain rate from . The equation of state of V,25 
allows an estimate of compression at ρ/ρ0 ~ 1.4, which occurs over the measured rise time of 
~6 ns, giving 2 x 107 s-1. This gives a second estimate of peak strength of σmax~19 kbar. 
These two analytic approximations bracket the more accurate result for the strength at peak 
pressure of σmax~25 kbar inferred from the 2D RT simulations. 
 We also compare our results of the RT growth using a new multiscale material model 
for vanadium26 and the simulation results are shown in Fig. 5. This model starts with an 
interatomic potential with a form derived from quantum mechanics and parameterized by first-
principles calculations.22 This interatomic potential is then incorporated into molecular 
dynamics (MD) simulations, to calculate the dynamic properties of individual dislocations, such 
as their velocity as a function of applied shear stress and lattice temperature. The dynamics of 
individual dislocations are parameterized, then input into dislocation dynamics simulations, to 
calculate the dislocation density evolution, work hardening, and strength as a function of the 
relevant parameters such as lattice pressure, temperature, strain, and strain rate.  Finally, 
these results are parameterized, and incorporated into the continuum code, ALE3D to 
calculate the actual RT instability evolution in the experiment. For the results shown in Fig. 5, 
the same plasma drive as discussed above was used.  This multiscale simulation, without 
adjusting any parameters, overpredicts the experimental RT growth by 40-50%. As shown in 
Fig. 5, all of the fundamental parameters, such as dislocation velocity, dislocation density, and 
strain rate are contained in this simulation. Also evident is a variation in strain rate and 
temperature across the ripple. 
 Our inferred macroscopic fluid viscosity of ~400 poise can be used to derive an order 
of magnitude estimate of the microscopic dislocation drag coefficient in the phonon drag 
regime at these very high strain rates. Based on the definition of (macroscopic) viscosity, we 
write   
 

    
   (4)

 

 
where µ is the dynamic viscosity, σshear is the shear stress driving the RT instability, vRT is the 
RT bubble velocity for perturbation of wavelength λRT, and  is the resulting RT-induced strain 
rate.  At the lattice level, the applied shear stress is related to terminal dislocation velocity by,27   
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, where b is the Burgers vector, M is the Taylor factor that relates the applied 
shear stress to an average resolved shear stress for the operative slip planes for 
polycrystalline samples, B is the dislocation drag coefficient, and vdisloc is the average 
dislocation velocity.28 The Taylor analysis results in one factor of M for the stress and a second 
for the strain (and strain rate), as verified in low rate experiments.29  Orowan’s equation relates 
macroscopic strain rate to the microscopic parameters, 

€ 

˙ ε = ρdislocbvdisloc /M , where ρdisloc  is the 
dislocation density. These equations can be combined to give  
 

     
    (5)

 

 
Taking µviscosity~ 400 Poise, a dislocation density of 2 x 1011 cm-2 from a multi-scale simulation 
of our RT experiment (see Fig. 5) at peak pressure,26  b0 ~ 3 Angstroms, b = b0/(ρ/ρ0)1/3 under 
compression of ρ/ρ0=1.4, and M = 2.889 (for our textured vanadium sample38) gives B ~ 10-2 
dyne.s/cm2.  We have thus inferred a dislocation drag coefficient of ~0.01 dyne.s/cm2 in the 
phonon drag regime under the peak pressure (~1 Mbar) and very high strain rate (~107 s-1) 
conditions in our vanadium RT experiment. This inferred phonon drag coefficient is consistent 
with that quoted by Nemaat-Nasser.30 
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Figure 1. (a) Schematic illustrating the experimental configuration. (b) Density plots of the RT 
growth from simulations at 45, 55, 65, and 75 ns, using the PTW strength model with input 
parameters modified to reproduce the RT data shown in Fig. 3.  The second plot at 75 ns (far 
right hand side) is for no strength, showing the much greater RT growth.  
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Figure 2. Results from the in-flight x-ray radiographs of the driven V-RT samples.  On the right 
hand side are example x-ray radiographs taken at 40 and 80 ns.  On the left hand side are 
lineouts of log(intensity) averaged over 120 µm. The smooth curves are fitted with single-mode 
sinusoids with a wavelength of λ = 60 µm, adjusting only the amplitude. 
 

 
 
Figure 3. (a) Measured and simulated Rayleigh-Taylor (RT) growth of the pre-imposed ripple 
in the driven vanadium foil. The solid red square plotting symbols give the experimental data. 
The smooth curves correspond to the simulations.  (b) Measured versus analytic RT dispersion 
curves, given as growth factor vs. perturbation wavelength at a time of 70 ns. The blue 
diamond solid plotting symbols correspond to a simulation with the PTW strength model 
adjusted to fit the experiment. The square red plotting symbols at λ = 40 µm and 60 µm 
correspond to the experimental measurements. The smooth curves correspond to the analytic 
viscous RT model assuming viscosities of (from the top) 0, 100, 200, 400, and 800 poise. 
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Figure 4. Results from a simulation of this V-RT experiment using a multiscale material model.  
The vanadium sample ripple amplitude and shape from the simulation at t = 70 ns is shown. 
are the V-RT ripple from the simulation at t ~ 70 ns.  The color scale gives (a) the natural log of 
the screw dislocation density in cm-2, (b) the screw dislocation velocity in cm/µs, (c) strain rate 
in µs-1, and (d) sample temperature (K). 


